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A THERMOSYPHON MODEL WITH A VISCOELASTIC
BINARY FLUID

ÁNGELA JIMÉNEZ-CASAS, MARIO CASTRO

Abstract. In this work we consider a viscoelastic fluid with the same trans-
fer law across the loop, as in previous works we add a solute to the fluid.

For this binary fluid, we consider the thermodiffusion (also known as Soret
effect) to obtain the well-posedness of the mathematical formulation of this

thermosyphon model, which is a generalization of the previous models.

1. Introduction

In this work we consider the motion of the viscoelastic binary fluid inside a
closed loop circuit (thermosyphon), when we consider a prescribed flux along the
loop wall and the contribution of axial diffusion. This problem arises in engineering
applications, where one deals with polymeric solutions that change the viscoelas-
tic response of the solvent and can be segregated inside the fluid creating solute
gradients.

Geometrically, a thermosyphon is a closed pipe containing a fluid and used,
primarily, as a heat exchanger between different spatial locations. Their use is
widespread in engineering so a deeper understanding of the effect of a prescribed
external heat flux can be important to design external mechanisms that can control
the flow within the thermosyphon.

Viscoelasticity [1], is produced by the internal composition of the fluid (that
includes the solvent and the solute) that make them solid-like at low shear rates
and water-like (Newtonian) at high shear rates (think, for instance, in ketchup or
soap gels). Elasticity is the result of bond stretching along crystallographic planes
in an ordered solid, whereas viscosity is the result of the diffusion of atoms or
molecules inside an amorphous material.

Thermodiffusion is a phenomenon of temperature gradient [3, 8], observed in
a mixture of two or more moving substances. The term “Soret effect” normally
means thermodiffusion in liquids. Thus, inside a thermosyphon, besides the effect of
temperature gradients, solute concentration gradients also trigger and drive natural
convection inside the loop, hence sustaining the motion of the fluid [15].
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As it has been shown in previous works [5, 7, 10, 13, 14, 16, 18, 20, 21] there
is a subtle coupling among gravity, natural convection and viscoelaticity, specially
when cross-effects are present (such as thermal-solute concentration couplings or
temperature dependent density).

The contributions in this article are:
• To generalize the system of equations (2.4) introduced in [23] governing this

thermosyphon model of a viscoelastic binary fluid with Soret effect where, instead
of leaving the motion be ambient-temperature driven as in [23], use an external heat
flux prescription that can be used by an experimenter to control the fluid motion
in the loop. This model, at different levels (the Soret effect, viscoelasticity or heat
coupling), is a generalization of the previous models [5, 7, 10, 13, 14, 16, 18].
• To prove the well-posedness: existence and regularity of solutions for nonlinear

coupled ODE/PDE system (2.4) arising in this new thermosyphon model.

2. Mathematical formulation of this prescribed heat flux model

For completeness, we include here some ideas of mathematical formulation for
the present model, although the details are in [23] where we consider also a ther-
mosyphon model with a viscoelstic binary fluid. The difference between this model
and the recent work with a viscoelastc binary fluid [23], is that here, we consider
a given function h to prescribed the heat flux at the wall of the loop instead of
the Newton’s linear cooling law. As shown in [10, 13, 18] this is not a trivial
generalization and requires a detailed analysis.

In this thermosyphon model we study the motion (velocity v) of the viscoelastic
binary fluid inside a closed loop. We note as the previous thermosyphon model for
binary fluid, even for Newtonian fluid (like water) [5, 9, 10, 11, 12, 14, 16], together
with the temperature T we study also de evolution of the solute concentration S;
so in this kind of binary fluid we have and additional partial differential equation
for the solute concentration, coupled with both the temperature and the velocity
inside the loop.

Moreover, in this work we consider a viscoelastic fluid where the viscoelasticity
is caused by the internal composition of the fluid (that includes the solvent and the
solute). This kind of viscoelasticity fluid presents more complex dinamyc since the
molecules responsible of the viscoelastic behavior (solute) can segregate inside the
solvent producing concentration gradients sensible to thermal gradients (the Soret
effect).

For small perturbations, the fluid behaves like an elastic solid with a charac-
teristic frequency of resonance which, eventually, could be relevant. Here, we will
approach this problem by studying the most essential feature of viscoelastic fluids:
memory effects i.e. its behavior depends on the whole past history [4].

The simplest approach to viscoelasticity comes from the so-called Maxwell con-
stitutive equation [17, 2]. Although this model is a great simplification, it has been
proven valid even for complex fluids as blood, in which red cells change its behavior
depending on their concentration or even the geometry of the vessel [19].

In this kind of fluid, both Newton’s law of viscosity and Hooke’s law of elasticity
are generalized and complemented through an evolution equation for the stress
tensor, σ̃. The stress tensor comes into play in the equation for the conservation of
momentum:

ρ
(∂v
∂t

+ v · ∇v
)

= −∇p+∇ · σ̃ + ρg (2.1)
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where ρ is density of the material, p the hydrostatic pressure and g the acceleration
due to gravity. We considere also the hypothesis of incompressibility (accurate
enough for liquids).

For a Maxwellian fluid in a narrow section thermosyphon, the stress tensor is
reduced to only one non-zero independent component, and evolves according to

µ

E

∂σ̃

∂t
+ σ̃ = µγ̇, (2.2)

where µ is the fluid viscosity, E the Young’s modulus and γ̇ is the only non-zero
component of the shear strain rate (or rate at which the fluid deforms).

We note that the equation (2.2) can be rewritten as

σ(t) = σ(0) + E

∫ t

0

e(E/µ)(s−t)γ̇(s)ds (2.3)

so, the so-called memory effect present in viscoelastic materials [17] is a way to
rephrase the averaging effect shown in 2.3 over past times. This (weighted by
an exponential) averaging can, for some parameters, remove the chaotic behavior
inside the thermosyphon.

Under stationary flow, (2.2) reduces to Newton’s law, σ̃ = µγ̇, and consequently
equation (2.1) takes the form of the celebrated Navier-Stokes equation. On the
contrary, for short times where impulsive behavior from rest can be expected, so
µ∂tσ̃ � Eσ̃, so equation (2.2) reduces to Hooke’s law of elasticity, σ̃ = Eγ.

Following the same procedure as in [13], namely, averaging first (2.1)-(2.2),
through the thermodiffusion section and, second, along its arclength, we arrive
at a nonlinear coupled ODE/PDE system, where nonlinearity enters specifically in
the equation for the velocity. In particular,

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
(T − S)fdx, v(0) = v0,

dv

dt
(0) = w0

∂T

∂t
+ v

∂T

∂x
= h(x) + ν

∂2T

∂x2
, T (0, x) = T0(x)

∂S

∂t
+ v

∂S

∂x
= c

∂2S

∂x2
− b∂

2T

∂x2
, S(0, x) = S0(x)

(2.4)

where h(x) is a given function which prescribed the heat flux at the wall of the
loop as in [10, 13, 18], instead of the Newton’s linear cooling law h = k(Ta − T ) as
in [9, 11, 12, 20, 13, 23], where Ta is the (given) ambient temperature distribution.
This is the difference between this model and the model in [23].

We consider the diffusion of temperature given by the term ν ∂
2T
∂x2 , with thermal

diffusion ν > 0 as in previous work.
The parameter ε in (2.4) is the (adimensional) time scale in which the transition

from elastic to fluid-like occurs in the fluid. This forms an ODE/PDE system for
the evolution of the velocity v(t), the distribution of the temperature T (t, x) of the
fluid and the solute concentration S(t, x) into the loop of (2.4). The equation for
the solute concentration S(t, x) is given by the Soret effect, thermodiffusion, where
c > 0 is the diffusion coefficient and b > 0 is the Soret coefficient like in the previous
models with this kind of binary fluids as [5, 9, 10, 11, 12]. Here

∮
=
∫ 1

0
dx denotes

integration along the closed path of the circuit. We can make this identification if
we consider only periodic functions (with period 1). The function f describes the
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geometry of the loop and the distribution of gravitational forces g [14, 21], with∮
f = 0.
We assume that G(v), which specifies the friction law at the inner wall of the

loop, is positive and bounded away from zero. This function has been usually taken
to be G(v) = G, a positive constant for the linear friction case [14] (Stokes flow),
or G(v) = |v| for the quadratic law [7, 16], or even a rather general function given
by G(v) = g̃(Re)|v|, where Re is the Reynolds number, Re = ρvL/µ. Here we
will consider a general function of the velocity assumed to be large for large values
of the velocity [20, 18]. The functions G, f , and h incorporate relevant physical
constants of the model, such as the cross sectional area, D, the length of the loop,
L, the Prandtl, Rayleigh, or Reynolds numbers, etc., see [20].

We consider G being a generic continuous function satisfying G(v) ≥ G0 > 0
and H(r) = rG(r) being locally Lipschitz.

3. Well-posedness and boundedness: Existence and uniqueness of
solutions

We will introduce some function spaces that will be used in the study of the
existence of solutions of (2.4). Let Ω = (0, 1) and consider the spaces

L2
per(Ω) =

{
u ∈ L2

loc(R), u(x+ 1) = u(x) a.e. x ∈ R
}
,

Hm
per(Ω) = Hm

loc(R) ∩ L2
per(Ω) (3.1)

where m ∈ N ∪ {0}, and u ∈ L2
loc(R) (or Hm

loc(R)) if and only if for every open
set ω ⊂⊂ R one has u ∈ L2

loc(ω) (or Hm
loc(ω), respectively). Finally, we consider

functions with zero average, and we denote by

L̇2
per(0, 1) = {u ∈ L2

loc(R), u(x+ 1) = u(x) a.e.,
∮
u = 0}, (3.2)

Ḣm
per(0, 1) = Hm

loc(R) ∩ L̇2
per(0, 1). (3.3)

Note that the dot stand for functions with zero average, and it is not related to
time derivatives of the functions.

In this section, we prove the existence and uniqueness of solutions of the ther-
mosyphon model (2.4), with f, h ∈ L̇2

per(0, 1), T0 ∈ Ḣ1
per(0, 1) and S0 ∈ L̇2

per(0, 1),
where L̇2

per(0, 1) and Ḣ1
per(0, 1) are given by (3.3).

To choose the framework, we note that for ν > 0, if we integrate the equation
for the temperature along the loop, taking into account the periodicity of T , i.e.,∮
∂T
∂x =

∮
∂2T
∂x2 = 0, we have d

dt (
∮
T ) =

∮
h, this is

∮
T =

∮
T0 +t

∮
h. Therefore, the

temperature is unbounded, as t→∞, unless
∮
h = 0. However, taking τ = T −

∮
T

and h∗ = h −
∮
h reduces to the case

∮
T (t) =

∮
T0 =

∮
h = 0, since from the

second equation of the system (2.4), τ satisfies the equation

∂τ

∂t
+ v

∂τ

∂x
= h(x) + ν

∂2τ

∂x2
, τ(0, x) = τ0(x) = T0 −

∮
T0.

Moreover, we integrate the equation for the solute concentration along the loop
and taking into account the periodicity of S, i.e.,

∮
∂S
∂x =

∮
∂2S
∂x2 = 0, we obtain

d
dt (
∮
S) = 0. As

∮
S is constant, it implies that the solute

∮
S =

∮
S0 for all t.

We consider σ = S −
∮
S0, then from the third equation of the system (2.4),

σ satisfies the equation (this σ is an auxiliary variable, not be confused with the
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stress)
∂σ

∂t
+ v

∂σ

∂x
= c

∂2σ

∂x2
− b∂

2τ

∂x2
, σ(0, x) = σ0(x) = S0 −

∮
S0.

Since
∮
f = 0, we have

∮
(T − S)f =

∮
(τ − σ)f and the equations for v is

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
(τ − σ)f, v(0) = v0,

dv

dt
(0) = w0.

Therefore, we obtain (v, τ, σ) satisfying the system (2.4) with τ0, σ0 replacing
T0, S0 respectively and

∮
f =

∮
τ0 =

∮
σ0 = 0 and

∮
T (t) =

∮
S(t) = 0 for all t ≥ 0.

Therefore, hereafter we consider all the functions of the system (2.4) to have zero
average.

Also, if ν, c > 0 the operators νA = −ν ∂2

∂x2 and cA = −c ∂
2

∂x2 , together with
periodic boundary conditions, are unbounded, self-adjoint operators with compact
resolvent in L2

per(0, 1), that are positive when restricted to the space of zero average
functions in L̇2

per(0, 1). Hence, the equation for the temperature T and the equation
for the solute concentration S in (2.4) are of parabolic type for ν, c > 0.

We write the system (2.4) as the following evolution system for acceleration,
velocity, temperature and solute concentration:

dw

dt
+

1
ε
w = −1

ε
G(v)v +

1
ε

∮
(T − S)f, w(0) = w0.

dv

dt
= w, v(0) = v0.

∂T

∂t
+ v

∂T

∂x
− ν ∂

2T

∂x2
= h, T (0, x) = T0(x),

∂S

∂t
+ v

∂S

∂x
= c

∂2S

∂x2
− b∂

2T

∂x2
, S(0, x) = S0(x).

(3.4)

That is,

d

dt


w
v
T
S

+


1/ε 0 0 0
0 0 0 0
0 0 −ν ∂2

∂x2 0
0 0 0 −c ∂

2

∂x2



w
v
T
S

 =


F1(w, v, T, S)
F2(w, v, T, S)
F3(w, v, T, S)
F4(w, v, T, S)

 (3.5)

with

F1(w, v, T, S) = −1
ε
G(v)v +

1
ε

∮
(T − S)f, F2(w, v, T, S) = w,

F3(w, v, T, S) = −v ∂T
∂x

+ h, F4(w, v, T, S) = −v ∂S
∂x
− b∂

2T

∂x2
,

and initial data 
w
v
T
S

 (0) =


w0

v0

T0

S0

 .

The operator

B =


1/ε 0 0 0
0 0 0 0
0 0 −ν ∂2

∂x2 0
0 0 0 −c ∂

2

∂x2
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is a sectorial operator in Y = R2 × Ḣ1
per(0, 1) × L̇2

per(0, 1) with domain D(B) =
R2 × Ḣ3

per(0, 1)× Ḣ2
per(0, 1) and has compact resolvent, see (3.3).

Using the result and techniques about sectorial operator in [6] to prove the
existence of solutions of the system, we have the following result.

Theorem 3.1. We assume that H(r) = rG(r) is locally Lipschitz, and that f, h ∈
L̇2

per(0, 1), with G(v) ≥ G0 > 0. Then, given (w0, v0, T0, S0) ∈ Y = R2×Ḣ1
per(0, 1)×

L̇2
per(0, 1), there exists a unique solution of (2.4) satisfying

(w, v, T, S) ∈ C([0,∞),Y) ∩ C(0,∞,R2 × Ḣ3
per(0, 1)× Ḣ2

per(0, 1)),(dw
dt
,
dv

dt
,
∂T

∂t
,
∂S

∂t

)
∈ C(0,∞,R2 × Ḣ3−δ

per (0, 1)× Ḣ2−δ
per (0, 1)),

for every δ > 0. In particular, (3.4) defines a nonlinear semigroup, S∗(t) in Y =
R2× Ḣ1

per(0, 1)× L̇2
per(0, 1), with S∗(t)(w0, v0, T0, S0) = (w(t), v(t), T (t, x), S(t, x)).

Proof. Step (i) We prove the local existence and regularity. This follows easily
from the variation of constants formula of [6]. To prove this, we write the system
as (3.5), and we have

Ut +BU = F (U), with U =


w
v
T
S

 ,

B =


1/ε 0 0 0
0 0 0 0
0 0 −ν ∂2

∂x2 0
0 0 0 −c ∂

2

∂x2

 , F =


F1

F2

F3

F4


where the operator B is a sectorial operator in Y = R2 × Ḣ1

per(0, 1) × L̇2
per(0, 1)

with domain D(B) = R2 × Ḣ3
per(0, 1) × Ḣ2

per(0, 1) and has compact resolvent. In
this context, the operator A = − ∂2

∂x2 must be understood in the variational sense,
i.e., for every T, ϕ ∈ Ḣ1

per(0, 1),

〈A(T ), ϕ〉 =
∮
∂T

∂x

∂ϕ

∂x

and L̇2
per(0, 1) coincides with the fractional space of exponent 1

2 as in [6]. We
denote Ḣ−1

per(0, 1) as the dual space and ‖ · ‖ the norm on the space L̇2
per(0, 1). If

we prove that the nonlinearity F : Y = R2 × Ḣ1
per(0, 1) × L̇2

per(0, 1) 7→ Y− 1
2 =

R2× L̇2
per(0, 1)× Ḣ−1

per(0, 1) is well defined, Lipschitz and bounded on bounded sets,
we obtain the local existence for the initial data in Y = R2× Ḣ1

per(0, 1)× L̇2
per(0, 1).

Using the fact that H(v) = G(v)v is locally Lipschitz together with f, h ∈
L̇2

per(0, 1), we will prove the nonlinear terms,

F1(w, v, T, S) = −1
ε
G(v)v +

1
ε

∮
(T − S)f, F2(w, v, T, S) = w,

F3(w, v, T, S) = −v ∂T
∂x

+ h, F4(w, v, T, S) = −v ∂S
∂x
− b∂

2T

∂x2
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satisfy F1 : R2 × Ḣ1
per(0, 1)× L̇2

per(0, 1) 7→ R, F2 : R2 × Ḣ1
per(0, 1)× L̇2

per(0, 1) 7→ R,
F3 : R2×Ḣ1

per(0, 1)× L̇2
per(0, 1) 7→ L̇2

per(0, 1) and F4 : R2×Ḣ1
per(0, 1)× L̇2

per(0, 1) 7→
Ḣ−1

per(0, 1); that is, F : Y 7→ Y− 1
2 is well defined, Lipschitz and bounded on bounded

sets.
Using the techniques of variation of constants formula [6], we obtain the unique

local solution (w, v, T, S) ∈ C([0, t∗],Y) (with a suitable t∗ > 0) of (3.4), which are
given by

w(t) = w0e
− 1

ε t − 1
ε

∫ t

0

e−
1
ε (t−r)H(r)dr +

1
ε

∫ t

0

e−
1
ε (t−r)

∮
(T − S)f(r)dr (3.6)

with H(r) = G(v(r))v(r).

v(t) = v0 +
∫ t

0

w(r)dr, (3.7)

T (t, x) = e−νAtT0(x) +
∫ t

0

e−νA(t−r)h(x)]dr −
∫ t

0

e−νA(t−r)v(r)
∂T (r, x)
∂x

dr, (3.8)

S(t, x) = e−cAtS0(x) +
∫ t

0

e−cA(t−r)[−v(r)
∂S

∂x
(r)− b∂

2T

∂x2
(r)]dr. (3.9)

where (w, v, T, S) ∈ C([0, t∗],Y = R2 × Ḣ1
per(0, 1) × L̇2

per(0, 1)) and using again
the results of [6], (smoothing effect of the equations together with bootstrapping
method), we obtain the regularity of solutions.
Step (ii) To prove the global existence, we must show that the solutions are
bounded in Y = R2 × Ḣ1

per(0, 1) × L̇2
per(0, 1) for finite time intervals and using

the nonlinearity of F , maps bounded on bounded sets, we conclude.
To obtain the norm of T is bounded in finite time, we multiply the equation for

the temperature by T in L̇2
per(0, 1). Then integrating by parts, we have

1
2
d

dt
‖T‖2 + ν‖∂T

∂x
‖2 =

∮
hTdx

since
∮
T ∂T
∂x = 1

2

∮
∂
∂x (T 2) = 0.

Using Cauchy-Schwartz and Young inequality and then the Poincaré inequality
for functions of zero average, since

∮
T = 0, together with π2 is the first nonzero

eigenvalue of A = − ∂2

∂x2 in L̇2
per(0, 1), we obtain

1
2
d

dt
‖T‖2 + νπ2‖T‖2 ≤ Cδ‖h‖2 + δ‖T‖2,

for every δ > 0 with Cδ = 1/(4δ). Thus, taking δ = νπ2/2, Cδ = 1/(2νπ2), we
obtain

d

dt
‖T‖2 + νπ2‖T‖2 ≤ ‖h‖

2

νπ2
, (3.10)

and we conclude that the norm of T in L̇2
per(0, 1) remains bounded in finite time.

Now, we prove that the norm ‖∂T∂x ‖ remains bounded in finite time intervals.
For this, multiply the third equation of (3.4) by −∂

2T
∂x2 in L̇2

per(0, 1). Integrating by
parts, applying the Young inequality and taking into account that∮

∂T

∂x

∂2T

∂x2
=

1
2

∮
∂(∂T/∂x)2

∂x
= 0,
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since ∂T/∂x is periodic, we obtain

1
2
d

dt
‖∂T
∂x
‖2 + ν‖∂

2T

∂x2
‖2 ≤ Cδ‖h‖2 + δ‖∂

2T

∂x2
‖2

for every δ > 0 with Cδ = 1/(4δ). Thus, taking δ = ν/2, and applying the Poincaré
inequality for functions with zero average we obtain

d

dt
‖∂T
∂x
‖2 + νπ2‖∂T

∂x
‖2 ≤ ‖h‖

2

ν
, (3.11)

since π2 is the first nonzero eigenvalue of A in L̇2
per(0, 1).

Thus we show that the norm of T in Ḣ1
per(0, 1) remains bounded in finite time.

Finally, we show that the norm of S in L̇2
per(0, 1) does not blow-up in finite time.

Multiplying the fourth equation of (3.4) by S, integrating by parts, applying the
Young inequality and again taking into account that∮

S
∂S

∂x
=

1
2

∮
∂S2

∂x
= 0,

since S is periodic, we obtain

1
2
d

dt
‖S‖2 + (c− δ)‖∂S

∂x
‖2 ≤ b2Cδ‖

∂T

∂x
‖2 (3.12)

for every δ > 0 with Cδ = 1/(4δ). Thus, taking δ = c/2, together with the Poincaré
inequality for functions with zero average, we obtain

d

dt
‖S‖2 + cπ2‖S‖2 ≤ b2

c
‖∂T
∂x
‖2 ≤ k1 (3.13)

with k1 > 0. Therefore ‖S(t)‖ remains bounded in finite time. Since ‖T‖ and
‖S‖ are bounded in finite time, imply that |w(t)|, |v(t)| remain also bounded in
finite time. Hence we have a global solution in the nonlinear semigroup in Y =
R2 × Ḣ1

per(0, 1)× L̇2
per(0, 1). �
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